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ABSTRACT

We measure transistor noise power density and compute
the Fourier’s transform. Finally, spectral parametric
modeling is used to extract noise waves correlation matrix.
Results obtained by this new method has been
experimentally compared with a conventional method.

INTRODUCTION

This new method is based on the analysis of the wave
power density in the time domain, which is obtained by a
Fourier’s transform of the measured noise power. Thus, we
obtain the noise power distribution in the time domain
called wave signal autocorrelation. This point of view
allows the use of spectral estimators (parametric models)
like autoregressive (AR) model. Only two noise power
measurements corresponding to two different input
coefficients are necessary to extract the wave correlation
matrix.

THE NOISE WAVE REPRESENTATION

This kind of representation is very helpful for the
microwave domain analysis. In the noise wave
representation, a circuit element’s noise is described by
using waves that emanates from its ports. A linear two-port
represented by noise wave and scattering parameters is
shown in Fig. 1. Noise waves bN1 and bN2 contribute to the
scattered waves. Thus, the wave variables and scattering
parameters satisfy:
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The noise waves are time-varying complex random
variables characterised by a correlation matrix given by
[4]:
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where .  indicates time averaging with an implicit
assumption of ergodicity and jointly wide-sense stationary

processes. The diagonal terms of CS give the noise power
deliverable to the terminations in a 1-Hz bandwidth and
the off-diagonal terms are correlation products. All noise
power are normalized with regard to kT0 factor where k is
the Boltzmann’s constant and T0 is equal to 273 K.

Fig. 1: The representation of a two-port circuit element
using scattering parameters and noise waves

The output noise power is equal to b2
2  and its

expression is given by:
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NOISE RECEIVER MODELING

The RF signal emanating from the device under test (DUT)
is amplified through a 20 dB amplifier (Fig. 2). Then, the
amplified signal is measured by the HP 8970B noise figure
meter (noise power measurement mode) in single side
band. For this noise receiver, the standard noise
parameters [4][5] can be simplified with the assumption of
uncorrelated noise wave sources. Our study has proven that
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 (NR: Noise Receiver) effect can be neglected.
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Where FNR
0  is the noise factor under matched input

impedance ( Γ1 0= ). Equation (6) is in agreement with
studies made by using conventional methods [6].

Fig. 2: The schematic representation of the noise
receiver

TRANSISTOR NOISE WAVE SOURCES
EXTRACTION

We have studied the output noise wave behaviors of several
transistors such as MESFETs and HEMTs and in this case,

b2
2  expression in (3) is simplified as follows:
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After an usual calibration, two noise power measurements
with different input reflection coefficients ( Γ1  around 0.8

and Γ1  close to 0) are necessary to separate the two terms
that compose (8) which are:
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The expression in (9) can be developed in order to make
the electrical length between Γ1 and S11 appear. Indeed, the
input coefficient reflection (Fig. 1) is supposed to be:
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(9) has a new formulation with the knowledge of (11):
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This expression can be written in a way to make a power
spectral density (PSD) appear:
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Where γx(f) is defined by:
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The notation γy (resp. γx) are y (resp. x) signal PSD. The
PSD totally describes behaviors of stationary gaussian
processes. Then we compute inverse Fourier’s transform in
order to obtain y and bN2 autocorrelation sequences.
With N γy measurements, each element of autocorrelation
sequence is calculated [1][7]:
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Where fi is the frequency that belongs to the frequency
range measurement [fmin, fmax]. The AR modeling is a
parametric PSD modeling under the assumption of signal
gaussianity [7]. Before explaining AR modeling, let us
introduce the reduced frequency variable ν. Fig. 3 gives
equivalence between measurement frequency and reduced
frequency and ν verifies:
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Fig. 3: Relation between reduced frequency and
measurement frequency

The AR modeling decomposes the y PSD in this way:
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Where (σ2, a1, ..., aP) are called autoregressive (AR)
parameters and P+1 the AR order. AR parameters are
extracted by solving (18), called Yule-Walker equations. It
is done by using the Levinson’s recursive algorithm [1][7].
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With this kind of modeling, we extract the γx value (20). A
good estimation for C(ν) in (2) is given by:
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Where γx(ν) is:
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[ ]Γ1
0  is an open and Q is the rank where ak  has its

maximum value. U is chosen to be equal to Q/2. Then, the
standard noise parameters may be derived from the noise
wave sources, in order to make the comparison easier with
other usual extraction methods [10]. Let us introduce ΓC

and S
EQ11  which simplifies standard noise parameters

expression:
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where bN NC1  is the part of bN1 not correlated with bN2.

Now, we are able to define a new reflection coefficient:
S S

EQ C11 11= − Γ (22)

Then, the standard noise parameters may be written [4][5]:
Normalized noise resistance:
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Optimum reflection coefficient:
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and therefore: ARG ARGopt EQ

( ) (S )Γ = − 11 (25)

Minimum noise factor:
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Γopt  values should be derived from (24) by solving a

second degree equation.

MEASUREMENTS AND COMPARISONS

The measurements are done in a 2.8-18 GHz frequency
range with a 38 MHz frequency step, in this case a GEC-
MARCONI 4x75 µm transistor at Vgs=-.7 V, Vds=5V and
Ids=10 mA. Fig. 4 gives γy(f) and γx(f) value while Fig. 5
indicates bN2 PSD that is fitted by an AR modeling too.

Fig. 6 gives b bN N1 2
*  extracted value.

Fig. 4: Curve 1: x extracted value
Curve 2: y measurement

Fig. 5: Curve 1: bN2 PSD extracted value
Curve 2: bN2 PSD measurement

Fig. 6: b bN N1 2
*  extracted value from

2.8 GHz to 18 GHz
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Corresponding i ig d
*  [3] value calculated with these

results is mainly imaginary, respecting [8].After this
extraction, the calculation of bN1 PSD value with the
acknowledgement of bE PSD becomes easy. Finally,
comparisons are made with standard noise parameters
given by GEC-MARCONI and those measured by a
laboratory (Fig. 7, 8 and 9).

Fig. 7: Fmin comparison

Fig. 8: Rn comparison

Fig. 9: opt comparison

CONCLUSIONS

The noise wave representation offers alternative analysis
which allows time domain representation of distributed
variables. The method proposed here uses a light set-up,
requires no source-pull tuner and offers advantages (less
time consuming ...) over conventional methods. This

method will be improved in order to obtain more accurate
noise sources extraction.
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